35 resultados para Single-Stranded Conformational

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dendritic nucleic acids are highly branched and ordered molecular structures, possessing numerous single-stranded oligonucleotide arms, which hold great promise for enhancing the sensitivity of DNA biosensors. This article evaluates the interfacial behavior and redox activity of nucleic acid dendrimers at carbon paste electrodes, in comparison to DNA. Factors influencing the adsorption behavior, including the adsorption potential and time, solution conditions, or dendrimer concentration, are explored. The strong adsorption at the anodically pretreated carbon surface is exploited for an effective preconcentration step prior to the chronopotentiometric measurement of the surface species. Coupled with the numerous guanine oxidation sites, such stripping protocol offers remarkably low detection limits (e.g., 3 pM or 2.4 femtomole of the I-layer dendrimer following a 15 min accumulation). The new observations bear important implications upon future biosensing applications of nucleic dendrimers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to determine the extent of DNA fragmentation and the presence of denatured single-stranded or normal double-stranded DNA in spermatozoa with large nuclear vacuoles (LNV) selected by high magnification. Fresh semen samples from 30 patients were prepared by discontinuous isolate concentration gradient. Spermatozoa with normal nucleus (NN) and LNV were selected at x8400 magnification and placed on different slides. DNA fragmentation was determined by TUNEL assay. Denatured and double-stranded DNA was identified by the acridine orange fluorescence method. DNA fragmentation in spermatozoa with LNV (29.1%) was significantly higher (P < 0.001) than in spermatozoa with NN (15.9%). Therefore, cleavage of genomic DNA in low molecular weight DNA fragments (mono- and oligonucleosomes), and single-strand breaks (nicks) in high molecular weight DNA occur more frequently in spermatozoa with LNV. Similarly, the percentage of denatured-stranded DNA in spermatozoa with LNV (67.9%) was significantly higher (P < 0.0001) than in spermatozoa with NN (33.1%). The high level of denatured DNA in spermatozoa with LNV suggests precocious decondensation and disaggregation of sperm chromatin fibres. The results show an association between LNV and DNA damage in spermatozoa, and support the routine morphological selection and injection of motile spermatozoa at high magnification for ICSI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 x 10(-21) mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CONTEXTO: Alterações do gene supressor de tumor p53, como mutações e deleções, são lesões genéticas encontradas com maior freqüência nas neoplasias humanas, incluindo câncer de mama, pulmão e cólon. Entre as malignidades hematológicas, o gene 53 é freqüentemente mutado no linfoma de Burkitt, sendo detectadas mutações em 30-40% das amostras tumorais e em 70% das linhagens celulares. OBJETIVO: Analisar as alterações do gene p53 em crianças com linfoma não-Hodgkin de origem B. TIPO DE ESTUDO: Estudo descritivo. LOCAL: Centro de Oncologia Terciário. PARTICIPANTES: O estudo analisou 12 pacientes com linfoma não-Hodgkin B classificados como linfoma de Burkitt. A análise de possíveis mutações do gene p53 foi realizada pela técnica de PCR-SSCP dos exons 5, 6 ,7 e 8/9 do gene. RESULTADOS: Um padrão anormal de migração foi observado em quatro pacientes (33.3%), em um paciente no exon 6 e em três no exon 7. Os casos positivos incluíam dois pacientes que evoluíram para o óbito por progressão da doença. CONCLUSÃO: Esses resultados preliminares sugerem que as alterações do gene p53 são freqüentes em crianças com linfoma de Burkitt e podem contribuir para patogênese ou progressão da doença.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The frequency of adenine mononucleotides (A), dinucleotides (AA) and clusters, and the positions of clusters, were studied in 502 molecules of the 5S rRNA.All frequencies were reduced in the evolutive lines of vertebrates, plants and fungi, in parallel with increasing organismic complexity. No change was observed in invertebrates. All frequencies were increased in mitochondria, plastids and mycoplasmas. The presumed relatives to the ancestors of the organelles, Rhodobacteria alfa and Cyanobacteria, showed intermediate values, relative to the eubacterial averages. Firmibacterid showed very high number of cluster sites.Clusters were more frequent in single-stranded regions in all organisms. The routes of organelles and mycoplasmas accummulated clusters at faster rates in double-stranded regions. Rates of change were higher for AA and clusters than for A in plants, vertebrates and organeltes, higher for cluster sites and A in mycoplasmas, and higher for AA and A in fungi. These data indicated that selection pressures acted more strongly on adenine clustering than on adenine frequency.It is proposed that AA and clusters, as sites of lower informational content. have the property of tolerating positional variation in the sites of other molecules (or other regions of the same molecule) that interact with the adenines. This reasoning was consistent with the degrees of genic polymorphism. low in plants and vertebrates and high in invertebrates. In the eubacteria endosymbiontic or parasitic to eukaryotes, the more tolerant RNA would be better adapted to interactions with the homologous nucleus-derived ribosomal proteins: the intermediate values observed in their precursors were interpreted as preadaptive.Among other groups, only the Deinococcus-Thermus eubacteria showed excessive AA and cluster contents, possibly related to their peculiar tolerance to mutagens, and the Ciliates showed excessive AA contents, indicative of retention of primitive characters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A label-free electrochemical detection method for DNA hybridization based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes is reported. Synthetic single-stranded 27-mer oligonucleotides (probe) have been immobilized at 2,5-bis(2-thienyl)-N-(3-phosphorylpropyl)pyrrole film formed by electropolymerization on the previously formed polypyrrole layer. The 27- or 18-mer target oligonucleotides were monitored via the electrochemically driven anion exchange of the inner polypyrrole film. The performance of the miniaturized DNA biosensor system was studied in respect to selectivity, sensitivity, reproducibility, and regeneration of the sensor. Control experiments were performed with a noncomplementary target of 27-mer DNA and 12 base-pair mismatched 18-mer sequences, respectively, and did not show any unspecific binding. Under optimized experimental conditions, the label-free electrochemical biosensor enabled the detection limits of 0.16 and 3.5 fmol for the 18- and 2 7-mer DNA strand, respectively. Furthermore, we demonstrate reusability of the electrochemical DNA biosensor after successful recovery of up to 100% of the original signal by regenerating the DNA label-free electrode with 50 mM HCl at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The CDKN1A (TP21)(2) gene encodes a 21-kD protein that is a critical downstream mediator of wild-type TP53 and an important regulator of the cell cycle. Failure in the function of this gene would be expected to result in abnormal cell proliferation and transformation. Tumor-associated mutations of the coding region of the TP21 are rare. on the other hand, some TP21 polymorphisms have been identified and characterized by single base substitutions. In the present study, we investigated the potential role of TP21 gene polymorphisms in skin, head, and neck tumorigenesis. A total of 261 samples were examined by polymerase chain reaction single-strand conformational analysis, and one mutation at codon 31 and four polymorphisms in exons 2 (codon 55) and 3 [nucleotide (nt)590] and in promoter region (nt2298) were identified. In conclusion, this investigation confirmed the rarity of mutations in this gene, arguing against a role for TP21 mutations in skin, head, and neck cancers. Also, our results show significant differences in nt2298 allele frequencies between normal individuals and skin malignant tumors (P < 0.05). The results suggest that this polymorphism affects TP21 transactivator binding and may be important during the pathogenesis of skin cancer. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated mutations in the genes katG, inhA (regulatory and structural regions), and kasA and the oxyR-ahpC intergenic region of 97 isoniazid (INH)-resistant and 60 INH-susceptible Mycobacterium tuberculosis isolates obtained in two states in Brazil: São Paulo and Parana. PCR-single-strand conformational polymorphism (PCR-SSCP) was evaluated for screening mutations in regions of prevalence, including codons 315 and 463 of katG, the regulatory region and codons 16 and 94 of inhA, kasA, and the oxyR-ahpC intergenic region. DNA sequencing of PCR amplicons was performed for all isolates with altered PCR-SSCP profiles. Mutations in katG were found in 83 (85.6%) of the 97 INH-resistant isolates, including mutations in codon 315 that occurred in 60 (61.9%) of the INH-resistant isolates and 23 previously unreported katG mutations. Mutations in the inhA promoter region occurred in 25 (25.8%) of the INH-resistant isolates; 6.2% of the isolates had inhA structural gene mutations, and 10.3% had mutations in the oxyR-ahpC intergenic region (one, nucleotide -48, previously unreported). Polymorphisms in the kasA gene occurred in both INH-resistant and INH-susceptible isolates. The most frequent polymorphism encoded a G(269)A substitution. Although KatG(315) substitutions are predominant, novel mutations also appear to be responsible for INH resistance in the two states in Brazil. Since ca. 90.7% of the INH-resistant isolates had mutations identified by SSCP electrophoresis, this method may be a useful genotypic screen for INH resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Routine applications of DNA hybridization biosensors are often restricted by the need for regenerating the single-stranded (ss) probe for subsequent reuse. This note reports on a viable alternative to prolonged thermal or chemical regeneration schemes through the mechanical polishing of oligonucleotide-bulk-modified carbon composite electrodes. The surface of these biocomposite hybridization biosensors can be renewed rapidly and reproducibly by a simple extrusion/polishing protocol. The immobilized probe retains its hybridization activity on confinement in the interior of the carbon paste matrix, with the use of fresh surfaces erasing memory effects and restoring the original target response, to allow numerous hybridization/measurement cycles. We expect that such reusable nucleic acid modified composite electrodes can be designed for a wide variety of biosensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to determine the extent of DNA fragmentation and the presence of single/denatured or double stranded of DNA in sperm with large nuclear vacuoles (LNV) selected by high-magnification. A total of 30 patients had fresh semen samples prepared by discontinuous concentration gradient. Sperm with normal nucleus (NN) and LNV were selected at 8400x magnification and placed in different slides. DNA fragmentation was determined by TUNEL assay. Denatured and double stranded DNA was identified by acridine orange fluorescence method. The percentage of DNA fragmentation in LNV sperm (29%) was significantly higher (P<0.001) than NN sperm (15.8%). Therefore, cleavage of genomic DNA in low molecular weight DNA fragments (mono and oligonucleosomes), and single strand breaks (nicks) in high molecular weight DNA occur more frequently in LNV. Identically, the percentage denatured stranded DNA in sperm with LNV (67.9%) was significantly higher (P <0.0001) than NN sperm (33%). The high level of denatured DNA in sperm with LNV suggests precocious decondensation and disaggregation of sperm chromatin fibers. Our results support an association between LNV sperm and DNA damage, and the routine selection and injection of morphological motile sperm at high magnification for ICSI. The adverse effect (DNA fragmentation or denaturation) leads to concern particularly about the possibility of iatrogenic transmission of genetic abnormalities. Copyright - SBRA - Sociedade Brasileira de Reprodução Assistida.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA biosensors have gained increased attention over traditional diagnostic methods due to their fast and responsive operation and cost-effective design. The specificity of DNA biosensors relies on single-stranded oligonucleotide probes immobilized to a transduction platform. Here, we report the development of biosensors to detect the hippuricase gene (hipO) from Campylobacter jejuni using direct covalent coupling of thiol- and biotin-labeled single-stranded DNA (ssDNA) on both surface plasmon resonance (SPR) and diffraction optics technology (DOT, dotLab) transduction platforms. This is the first known report of the dotLab to detect targeted DNA. Application of 6-mercapto-1-hexanol as a spacer thiol for SPR gold surface created a self-assembled monolayer that removed unbound ssDNA and minimized non-specific detection. The detection limit of SPR sensors was shown to be 2.5 nM DNA while dotLab sensors demonstrated a slightly decreased detection limit of 5.0 nM (0.005 μM). It was possible to reuse the SPR sensor due to the negligible changes in sensor sensitivity (∼9.7 × 10 -7 ΔRU) and minimal damage to immobilized probes following use, whereas dotLab sensors could not be reused. Results indicated feasibility of optical biosensors for rapid and sensitive detection of the hipO gene of Campylobacter jejuni using specific ssDNA as a probe. © 2011 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have previously shown that the subunit 1 of Leishmania amazonensis RPA (LaRPA-1) alone binds the G-rich telomeric strand and is structurally different from other RPA-1. It is analogous to telomere end-binding proteins described in model eukaryotes whose homologues were not identified in the protozoan's genome. Here we show that LaRPA-1 is involved with damage response and telomere protection although it lacks the RPA1N domain involved with the binding with multiple checkpoint proteins. We induced DNA double-strand breaks (DSBs) in Leishmania using phleomycin. Damage was confirmed by TUNEL-positive nuclei and triggered a G1/S cell cycle arrest that was accompanied by nuclear accumulation of LaRPA-1 and RAD51 in the S phase of hydroxyurea-synchronized parasites. DSBs also increased the levels of RAD51 in non-synchronized parasites and of LaRPA-1 and RAD51 in the S phase of synchronized cells. More LaRPA-1 appeared immunoprecipitating telomeres in vivo and associated in a complex containing RAD51, although this interaction needs more investigation. RAD51 apparently co-localized with few telomeric clusters but it did not immunoprecipitate telomeric DNA. These findings suggest that LaRPA-1 and RAD51 work together in response to DNA DSBs and at telomeres, upon damage, LaRPA-1 works probably to prevent loss of single-stranded DNA and to assume a capping function.